RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR

B.A./B.SC. SECOND SEMESTER (January – June), 2012 Mid-Semester Examination, March 2012

Date : 20/03/2012 COMPUTER SCIENCE (General)

Time: 11 am – 12 noon Paper: II Full Marks: 25

Answer Question No. 1 and any two from the rest:

1. What do you mean by Convoy Effect? In which kind of Scheduling technique does it occur? Illustrate the concept of multiprogramming with a suitable example. $[2+\frac{1}{2}+2\frac{1}{2}]$

OR

What do you mean by Algorithm? Illustrate its properties with respect to a suitable example. [2+3]

2. a) What do you mean by dead lock? State the necessary conditions for it.

[2+3]

b) What do you mean by aging? Consider the following processes available with their arrival time and burst time:

Processes	Arrival Time	Burst Time
\mathbf{P}_1	0 ms	10 ms
P_2	2 ms	8 ms
P_3	6 ms	4 ms
\mathbf{P}_{4}	4 ms	5 ms

Find the average waiting time using preemptive SJF scheduling algorithm.

[2+3]

- 3. a) What do you mean by Time complexity of an algorithm? Define Big \bigcirc , Big Ω and Big θ with proper example and give their geometrical interpretation. [2+5]
 - b) Give the increasing order of the asymptotic complexity of the following functions:

$$f_1(n) = 2^n$$
; $f_2(n) = n^{\log_2 n}$; $f_3(n) = n^{\frac{3}{2}}$; $f_4(n) = n \log_2 n$. [2]

c) Show that $f(n) \in O(n^2)$, where $f(n) = 2n^2 + 5n + 3$.

If $f(n) \in O(g(m))$ and $g(m) \in O(h(m))$, then show that $f(n) \in O(h(m))$.

[3]

[1]

- b) What do you mean by process? Illustrate the life-cycle of a process with proper diagram. Give the picture of process control block. [1+3+2]
 - c) What do you mean by an exponential type algorithm?

4.

a)

[1]

多幾級